Notes: Rational Functions and Asymptotes

Discontinuities

Holes (removable discontinuity)

• occur when there is a value of x that would make the denominator equal to zero, but we can cancel out the factor

	 Set the canceled factor equal to 0. Plug the answer into the simplified equation to get y. 		2. Solve for x.
			4. (x, y) is the hole
1.	$f(x) = \frac{x+2}{x^2-4}$	2. $g(x) = \frac{x^2 - 2x - 15}{x + 3}$	3. $y = \frac{4x - 20}{x^2 - 7x + 10}$

Vertical Asymptotes (non-removable discontinuity)

• occur when there is a value of x that would make the denominator equal to zero, but we can't get rid of the factor

1.
$$y = \frac{x}{2x-6}$$
 2. $y = \frac{10}{x^2-4}$ 3. $y = \frac{x+5}{x^2+6x+5}$

To put it simply:

When it comes to the denominator if it cancels out → hole if it doesn't cancel out → vertical asymptote

Horizontal Asymptote - occur in 2 out of the 3 cases

• to find a horizontal asymptote, see what happens to the function as x approaches infinity Conclusion (short cut)

Case 1: \rightarrow Denominator exponent is larger/higher

Case 2: \rightarrow Exponents are equal

Case 3: → Numerator exponent is larger/higher

1.
$$y = \frac{1}{2x+5}$$
 2. $y = \frac{5x^2+4x+2}{x^2-7}$ 3. $y = \frac{x^2-x+2}{x+4}$

Slant Asymptotes

Steps: Use synthetic division to determine the **<u>equation</u>** of the slant asymptote

• occur only when the highest power in the numerator exceeds the highest power in the denominator by exactly one in the simplified function

1.
$$y = \frac{x^2}{x-6}$$
 2. $y = \frac{3x^3 - 2x + 4}{x-3}$ 3. $y = \frac{3x^2 - 5x + 7}{x-2}$